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In magnetic resonance imaging (MRI), there have been three basic techniques to encode the spatial origin
of the signals, i.e. Fourier and radio frequency encoding and the use of sensitivity information of sensor
arrays. In this paper, we introduce a new encoding method, which we call polarization encoding. The
method utilizes sets of polarizing fields with various spatial profiles; it is tailored for MRI at ultra-low
fields (ULF MRI). In ULF MRI, signals from a prepolarized sample are typically detected using an array
of SQUID (superconducting quantum interference device) sensors at microtesla fields. The prepolariza-
tion is achieved with a field of the order of 10–100 mT preceding the signal acquisition. In polarization
encoding, the prepolarizing field is varied in a way to gain additional information about the sample.
The method may also prove useful for modalities that in the absence of any precession aim to image
the DC magnetization profile of a sample.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Magnetic resonance imaging (MRI) was made possible by the
introduction of methods that encode the spatial origin of the nucle-
ar magnetic precession signals. In Fourier encoding, linear mag-
netic field gradients are applied during or prior to the signal
acquisition [1]; as a result, the phase and the frequency of the pre-
cession signal depend linearly on its spatial position; the image can
be reconstructed via inverse Fourier transform. Commonly, Fourier
encoding methods require slice selection to reduce the signal
dimension. In contrast, radio-frequency (RF) encoding uses RF
pulses to produce spatial magnetization profiles [2–4]; for exam-
ple, sample magnetization can be tilted with suitable RF pulses
to produce wavelet-shaped signal profiles and the image recon-
struction is achieved via an inverse wavelet transform.

Parallel imaging techniques (pMRI), e.g. SMASH, SENSE, or
GRAPPA [5–7], have offered a significant increase in imaging speed.
In pMRI, signals are received with a sensor array and the spatially
varying sensitivity profiles of the sensors are used for signal encod-
ing. When imaging with K sensors, imaging times can be at most K
times reduced in comparison to single-sensor imaging; in practice,
such high a reduction is unreachable.

Recently, several research groups have started to develop ultra-
low-field MRI (ULF MRI) [8–10]. In ULF MRI, precession signals are
detected typically at microtesla fields using highly sensitive sen-
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sors, such as superconducting quantum interference devices
(SQUIDs) [8], giant magnetoresistance (GMR) sensors [11,12], or
atomic magnetometers [13]. Because signals in ULF MRI are re-
corded at fields orders of magnitude below the conventional MRI
field strength of a few tesla, the detection period is preceded by
polarizing the sample at a field of the order of 10 or 100 mT. De-
spite the prepolarization and highly sensitive sensors, imaging
times in ULF MRI tend to be long; therefore, methods to reduce
acquisition times are needed. For example, pMRI has been demon-
strated to reduce imaging times in ULF MRI [14].

In this paper, we introduce a new encoding method, which we
call polarization encoding [15,16]. The encoding protocol includes
a series of polarizing fields with various spatial profiles. At this
stage, we present only numerical simulations that illustrate the
concept. From the technical point of view, the experimental reali-
zation seems especially suitable for prepolarization-enhanced ULF
MRI. However, it may also prove useful for imaging modalities that
in the absence of precession aim to detect directly the DC magne-
tization profile of a sample.
2. Theory

In MRI, the real-valued signal of a single sensor in the laboratory
frame may be expressed as

sðtÞ ¼
Z

AðrÞ �M ðr; tÞdV ; ð1Þ

where t is time, r is the spatial position, AðrÞ is the three-compo-
nent real-valued sensitivity vector of the sensor and M ðr; tÞ is the

http://dx.doi.org/10.1016/j.jmr.2009.11.010
mailto:jaakko.nieminen@tkk.fi
http://www.sciencedirect.com/science/journal/10907807
http://www.elsevier.com/locate/jmr


212 J.O. Nieminen et al. / Journal of Magnetic Resonance 202 (2010) 211–216
magnetization vector of the sample at r at time t; the integration is
performed over the sample. For numerical analysis, this equation is
discretized such that

sðtÞ ¼ a �mðtÞ; ð2Þ

where a and m are, in general, 3Nv-component vectors containing
the sensor sensitivities and the magnetization integrals over the
Nv voxels.

MRI signals detected by a sensor array can be written in vector
form:

sðtÞ ¼ AmðtÞ; ð3Þ

where A is a sensitivity matrix and mðtÞ contains the cartesian com-
ponents of the magnetization vector in each voxel; here, for sim-
plicity, noise is ignored. Let us consider A in more detail. The lth
row of A contains the sensitivity vector of the lth sensor. If we as-
sume that only the x and y components of the magnetization are de-
tected, m has 2Nv elements and A is an Ns � 2Nv matrix, where Ns is
the number of sensors. The assumption is valid, e.g. when the pre-
cession is around the z axis and T1 relaxation is slow. The evolution
of m is governed by the Bloch equations [17].

Eq. (3) allows us to solve only Ns elements of m. To obtain addi-
tional information about m, A has to be enlarged; polarization
encoding allows this. In this method, various polarizing fields are
used to magnetize the sample in consecutive measurements. The
resulting magnetization depends linearly on the polarizing field.
As will be shown, the effect of polarization encoding can be under-
stood using the concept of independent virtual sensors.

Assume that K consecutive measurements are performed such
that during the kth acquisition the magnetization is

mðkÞðtÞ ¼ CðkÞmðtÞ: ð4Þ

In Eq. (4), CðkÞ is a block-diagonal conversion matrix, which depends
on the kth polarizing field and will be considered below, and mð0Þ is
the magnetization that would be produced by a homogenous polar-
izing field Bp ¼ Bpex. The waveforms of the components of mðkÞ are
identical at different trials because, after polarization, they evolve in
the same measurement field. Combining Eqs. (3 and 4), the kth
measurement records

sðkÞðtÞ ¼ ACðkÞmðtÞ: ð5Þ

A composite signal vector s0 and a composite sensitivity matrix A0

can be constructed from the sðkÞ:s and ACðkÞ:s, respectively:

s0ðtÞ ¼
sð1ÞðtÞ
..
.

sðKÞðtÞ

0BB@
1CCA and A0 ¼

ACð1Þ

..

.

ACðKÞ

0BB@
1CCA: ð6Þ

Then,

s0ðtÞ ¼ A0mðtÞ: ð7Þ

The elements of s0 can be considered to be signals of virtual sensors
whose sensitivities are described by the ACðkÞ:s. If the polarizing
fields are chosen properly,

rank A0 ¼ K rank A; ð8Þ

i.e. the number of linearly independent sensors becomes K-fold; this
allows us to solve a larger m than with only one polarizing field.

In the following, a general form of the conversion matrices is
presented. Assume that the measurement field is
Bmðr; tÞ ¼ Bmðr; tÞez, where r is the spatial position. The time-
dependent form of Bm may include encoding gradients, e.g. when
polarization encoding is combined with Fourier encoding. During
the kth polarization, the polarizing field is BðkÞp ðrÞ. With this field,
the signals follow Eq. (5). Suppose that the ð2i� 1Þth and the
ð2iÞth elements of mðtÞ are the x and y components of the magne-
tization at ri, which is the position of the ith voxel. For Nv voxels,
CðkÞ is a 2Nv � 2Nv block-diagonal matrix; the ith block being

FðkÞi ¼ f ðkÞðriÞ
cos /ðkÞðriÞ � sin /ðkÞðriÞ
sin /ðkÞðriÞ cos /ðkÞðriÞ

 !
¼

BðkÞp ðriÞ�ex

Bp
� BðkÞp ðriÞ�ey

Bp

BðkÞp ðriÞ�ey

Bp

BðkÞp ðriÞ�ex

Bp

0B@
1CA;
ð9Þ

where

cos /ðkÞðriÞ ¼
BðkÞp ðriÞ � ex

BðkÞp ðriÞ
��� ���

xy

ð10Þ

and

sin /ðkÞðriÞ ¼
BðkÞp ðriÞ � ey

BðkÞp ðriÞ
��� ���

xy

ð11Þ

define the angle between Bp ¼ Bpex and BðkÞp ðriÞ, k � kxy is the Euclid-
ean norm of the x and y components of the argument, and

f ðkÞðriÞ ¼
BðkÞp ðriÞ
��� ���

xy

Bp
ð12Þ

defines the change in the amplitude. If BðkÞp ðriÞ
��� ���

xy
¼ 0, the angle

/ðkÞðriÞ is undetermined; however, the final form of Eq. (9) is still
valid.

In Appendix A, it is argued that the linear independence of the
polarizing fields is a necessary and sufficient condition to produce
linearly independent virtual sensors.

3. Methods

The proposed method was tested by ULF-MRI simulations using
the geometry of the 304-channel SQUID system of Physikalisch-
Technische Bundesanstalt in Berlin [9]. All the SQUID sensors are
magnetometers; they are positioned inside a flat-bottom dewar
and arranged in eight horizontal planes. The sensor array is
244 mm in diameter. The lowest and highest planes are 29 and
169 mm above the dewar bottom, respectively. The pick-up areas
of the sensors are octagons with maximum diameter 7.2 mm. Fur-
ther details of the sensor configuration can be found in [18].

We simulated a two-dimensional phantom positioned 40 mm
below the lowest SQUID plane; center of the phantom was on
the center axis of the dewar. The simulated phantom was
constructed from the normal brain data of BrainWeb [19,20], with
1-mm resolution. For this study, 10 transverse planes from the
middle of the data set were used. Neighboring voxels of the planes
were merged to produce larger voxels, though preserving the
original tissue types; for each large voxel, the tissue type that dom-
inated in the merged voxels was chosen. Fig. 1a shows a visualiza-
tion of the simulated phantom. The phantom had 15� 15 voxels,
with dimensions 12.1, 10.0, and 14.5 mm in the x, y, and z
directions, respectively. Parameters of different tissues are listed
in Table 1. These parameters have also been used for high-field
MRI simulations [19,20]. However, according to [21–23], T2 values
do not depend strongly on the magnetic field strength; thus, the
values are also suitable for ULF MRI.

Next, the simulation sequence is described (Fig. 2). Let us define
the coordinates such that the origin is at the center of the lowest
SQUID plane, ey points upwards, and ex and ez define a plane par-
allel to the bottom of the dewar. The sample was first polarized
to magnetic equilibrium using one of the polarizing fields BðkÞp ,
which are listed in Table 2 and illustrated in Fig. 1b. Then, BðkÞp

was switched off nonadiabatically and the measurement field
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Fig. 1. (a) An illustration of the simulated phantom showing both the proton densities (PD) and T2 times of the voxels. White color represents the maximum values of Table 1;
voxels for which T2 is undefined are printed black. (b) A schematic figure of the simulated polarizing fields that we used in this study, see Table 2. Arrow sizes are proportional
to the field strengths. After the polarization periods, the simulation assumed a homogeneous measurement field along ez .

Table 1
Tissue parameters for the simulations. PD is proton density relative to that of
cerebrospinal fluid.

Tissue name PD T2 (ms)

Background 0.00 –
Cerebrospinal fluid 1.00 329
Grey matter 0.86 83
White matter 0.77 70
Fat 1.00 70
Muscle/skin 1.00 47
Skin 1.00 329
Skull 0.00 –
Glial matter 0.86 83
Meat 0.77 70

Bp
(1)

Bm

Bp
(2) Bp

(K)

BmBm

Fig. 2. A schematic diagram of the simulated pulse sequence that we used to
simulate polarization encoding. There are in total K different polarizing fields BðkÞp .
Each polarization period is followed by signal detection while the measurement
field Bm is applied.

Table 2
Polarizing fields of the simulations. (A) One homogeneous field. (B) One homogeneous
field and a field with a linear z-directional gradient; g ¼ 10 m�1 defines the gradient
strength. (C) Two orthogonal homogeneous fields. (D) Two orthogonal homogeneous
fields and two fields with linear gradients in the x and z directions.

A Bð1Þp ¼ Bpex

B Bð1Þp ¼ Bpex Bð2Þp ¼ ð1þ gr � ezÞBpex

C Bð1Þp ¼ Bpex Bð2Þp ¼ Bpey

D Bð1Þp ¼ Bpex Bð2Þp ¼ ð1þ gr � ezÞBpex

Bð3Þp ¼ Bpey Bð4Þp ¼ ð1þ gr � exÞBpex
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Bm ¼ Bmez, where Bm ¼ 5 lT, was applied. Simulated signals were
sampled at 1 kHz while Bm was on for 100 ms. This was repeated
for the sets of BðkÞp :s. The evaluation of the magnetization was sim-
ulated using the Bloch equations. Signals of the sensors were calcu-
lated by summing over the source phantom; for each voxel, the
magnetization was assumed to be located at the center of the vox-
el. Finally, random white Gaussian noise, with standard deviation
r, was added to the signals.

For each of the cases (A–D, in Table 2), transverse components
of the voxel magnetizations as a function of time were solved from
Eq. (7) using the composite sensitivity matrix, its singular value
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Fig. 4. Averages of errors (Eq. 14) for 10 simulations with the simulated phantom;
shaded regions show the mean � one standard deviation. k is defined in Eq. (15);
characters A–D refer to different polarization sets, as explained in Table 2.

214 J.O. Nieminen et al. / Journal of Magnetic Resonance 202 (2010) 211–216
decomposition, and by truncating singular values smaller than wt

to zero. wt was chosen independently for each simulated noise le-
vel and polarization set such that mean errors over 10 simulations
would have been larger with truncation values w0t ¼ 3wt=2 and
w0t ¼ wt=2. Different truncation values were used when estimating
the amplitudes and the T2 times of the voxels. The transverse com-
ponents were combined to create complex magnetizations. The
magnetization of each voxel precesses around Bm and decays
according to a tissue-specific relaxation time. Thus, for each voxel,
a decaying complex sinusoidal function was fitted in the time do-
main using the HTLS (Hankel total least squares) method [24]. Esti-
mates for the initial amplitudes and the T2 relaxation times of the
voxels were obtained from the fit parameters; prior knowledge of
the polarizing field orientations was used to eliminate non-physi-
cal magnetization components.

Errors in the amplitude estimates were analyzed using the
function

Eamp ¼
m̂ð0Þ �mð0Þk k1

mð0Þk k1
; ð13Þ

where m and m̂ are the magnetization used for simulations and the
estimated magnetization, respectively, and k � k1 is the l1 norm. Sim-
ilarly, errors in the estimated T2 times were studied using the
function

ET2 ¼
1

NT2

XNT2

i¼1

jbT 2ðriÞ � T2ðriÞj
T2ðriÞ

; ð14Þ

where the summation goes over the NT2 voxels for which the T2

time is defined and T2 and bT 2 are the transverse relaxation times
used for the simulations and its estimate, respectively.

4. Results

In the following, simulated results for the phantom (see Fig. 1a)
are considered. Mean errors Eamp (Eq. 13) and ET2 (Eq. 14) for 10
simulations are plotted in Figs. 3 and 4, respectively; the shaded
region shows values that are at most one standard deviation away
from the mean. Values of the horizontal axes are defined through

k ¼
Bp

ffiffiffiffiffiffi
Np

p
r ; ð15Þ

where Bp is the amplitude of the polarizing field, Np is the number
of different polarizations used, and r is the standard deviation of
log
10

λ
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p
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Fig. 3. Averages of errors (Eq. 13) for 10 simulations with the simulated phantom;
shaded regions show the mean � one standard deviation. k is defined in Eq. (15);
characters A–D refer to different polarization sets, as explained in Table 2.
the noise. The factor
ffiffiffiffiffiffi
Np

p
in k makes the results of different Np eas-

ily comparable; it is needed to scale the noise level, because in Eq.
(7) the size of s0 depends on Np. For example, an increase in log10k
by 1 can be interpreted as an order-of-magnitude increase of the
polarizing fields.

Figs. 3 and 4 show that polarization encoding improves the esti-
mation accuracy; if the aim is to obtain images with a given accu-
racy, polarization encoding can be used to reduce imaging times. In
Fig. 5, the singular values of the composite sensitivity matrices are
plotted. The figure shows that polarization encoding reduces the
condition number of the sensitivity matrix, leading to more robust
solutions. Moreover, with only one polarizing field it is impossible
to produce precise images, even at high signal-to-noise ratio, be-
cause the sensitivity matrix is rank-deficient, i.e. there is not en-
ough information to solve all the unknowns.
5. Discussion and conclusions

We propose a new way of encoding spatial information in mag-
netic resonance imaging. The method appears to be particularly
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Fig. 5. Non-zero singular values wi of the composite sensitivity matrices A0 for the
simulated phantom with 15� 15 voxels. Values are arranged in descending order,
such that, w0 is the largest singular value. Characters A–D refer to the polarizations
as listed in Table 2.
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applicable to ultra-low-field MRI. It is conceptually based on the
idea to impress a variety of polarization profiles to the object. With
an adequate choice of such profiles, the image can be reconstructed
from a series of measurements by the corresponding inverse trans-
formation. In practice, the fields should be chosen, e.g. on the basis
of instrumentation issues and the condition number of the com-
posite sensitivity matrix A0. The methods of this paper can be used
to analyze also RF encoding, because it is only another way to pro-
duce magnetization profiles. For simplicity, we considered only
sensors sensitive to the x and y components of the magnetization,
which is enough for most purposes of MRI; still, the methods of
this study can be easily generalized to produce virtual sensors with
continuous sensitivities or virtual sensors that are sensitive to all
three components of the magnetization.

In this study, we demonstrated the applicability of polarization
encoding with simple polarizing field patterns. The benefits of the
method depend on the shapes of the fields one is able to produce;
when the fields are highly similar, the method resembles signal
averaging with a single polarizing field. In general, it may be diffi-
cult to produce large images with small voxels by only using polar-
ization encoding, because of the requirement NsNp P 2Nv.
However, it is possible to combine the method with other encoding
methods; for instance, one dimension can be encoded by polariza-
tion encoding and the others by Fourier encoding techniques. Then,
a feasible number of parameters has to be solved using matrix
inversions. Moreover, by careful coil design, it is possible to con-
struct polarizing field profiles that are, approximately, from a cer-
tain function basis, e.g. wavelets or Fourier basis. Then, the inverse
problem can be solved with well-behaving function transforms. In
such cases, the method resembles SMASH, in which sensor arrays
are designed such that the sensitivity profiles are spatial harmonics
[5].

It has been demonstrated recently that the longitudinal proton
polarization of a water flow can be measured by atomic magne-
tometers in the absence of precession [25]. Utilizing the fre-
quency-independent broad-band sensitivity of SQUIDs, it may
even be possible to measure directly the relaxation of the longitu-
dinal magnetization of a static sample. Similar to what was shown
for the relaxation of magnetic nanoparticles in an animal model by
moving a sensor with respect to the sample [26] or by using a large
sensor array [27], this may end up in a new kind of magnetic imag-
ing by using polarization encoding in addition to established
reconstruction techniques.

The proposed method is especially suitable for ULF MRI, be-
cause at low fields it is possible to construct sets of polarizing
fields. Moreover, at low fields, imaging processes need improve-
ments because current methods are slow and suffer from poor im-
age quality. Although pMRI methods reduce imaging times in ULF
MRI [14], there is always a need for the prepolarization. Polariza-
tion encoding utilizes the otherwise suboptimally used prepolar-
ization time for signal encoding.
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Appendix A. Requirements for the polarizing fields

In the following, it will be shown that the linear independence
of the polarizing fields is a sufficient condition to produce linearly
independent virtual sensors. First, assume there is a linearly inde-
pendent set B of polarizing fields:
B ¼ BðkÞp jk ¼ 1; � � � ;K
n o

ð16Þ

such that, for all k, there exist no coefficients cj for which

BðkÞp�xy ¼
XK

j¼1;j – k

cjB
ðjÞ

p�xy; ð17Þ

where

BðkÞp�xy ¼ BðkÞp � ex;B
ðkÞ
p � ey

� �T
: ð18Þ

As was shown in Section 2, these polarizing fields can be used to
produce virtual sensors. Next, it will be shown that for each physi-
cal sensor that is sensitive to all source voxels, a linearly indepen-
dent set of K virtual sensors can be created using the set B.

Consider the lth physical sensor, whose sensitivity is described
by the lth row of A in Eq. (3). The respective virtual sensors are de-
fined by the lth rows of ACðkÞ:s, where the blocks of CðkÞ are given by
Eq. (9). The ð2i� 1Þth and ð2iÞth elements of the lth row of ACðkÞ for
i ¼ 1; � � � ;Nv are

ðACðkÞÞl;2i�1

ðACðkÞÞl;2i

 !
¼

Al;2i�1 Al;2i

Al;2i �Al;2i�1

� �BðkÞp�xyðriÞ
Bp

; ð19Þ

where the subscripts of A refer to the elements of A. Assume that
the sensitivity of the kth virtual sensor can be written as a linear
combination of the sensitivities of the other virtual sensors:

ðACðkÞÞl;2i�1

ðACðkÞÞl;2i

 !
¼

XK

j¼1;j – k

cj

ðACðjÞÞl;2i�1

ðACðjÞÞl;2i

 !
¼

Al;2i�1 Al;2i

Al;2i �Al;2i�1

� � XK

j¼1;j – k

cj
BðjÞp�xyðriÞ

Bp
:

ð20Þ

Since the lth coil is sensitive to all voxels, i.e. at least Al;2i�1 – 0 or
Al;2i – 0 for i ¼ 1; � � � ;Nv, Eqs. (19 and 20) yield

BðkÞp�xy ¼
XK

j¼1;j – k

cjB
ðjÞ

p�xy: ð21Þ

Because the assumption of linearly dependent virtual sensors im-
plies linearly dependent polarizing fields, linearly independent
polarizing fields produce independent virtual sensors. For nota-
tional simplicity, sensors were assumed to be sensitive to all voxels.
However, if a sensor is sensitive to only a subset of all voxels, it can
be proved similarly as above that the linear independence of the
polarizing fields is required in the region defined by the subset.

In addition, it is simple to prove that when adding linearly
dependent polarizing fields to an existing field set, no new infor-
mation is gained. Thus, the linear independence of the polarizing
fields is a necessary and sufficient condition to produce linearly
independent virtual sensors.
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